4.6 Article

Raptor and Rheb Negatively Regulate Skeletal Myogenesis through Suppression of Insulin Receptor Substrate 1 (IRS1)

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 286, Issue 41, Pages 35675-35682

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M111.262881

Keywords

-

Funding

  1. National Institutes of Health [AR048914]

Ask authors/readers for more resources

The mammalian target of rapamycin (mTOR) is essential for skeletal myogenesis through controlling distinct cellular pathways. The importance of the canonical mTOR complex 1 signaling components, including raptor, S6K1, and Rheb, had been suggested in muscle maintenance, growth, and metabolism. However, the role of those components in myogenic differentiation is not entirely clear. In this study we have investigated the functions of raptor, S6K1, and Rheb in the differentiation of C2C12 mouse myoblasts. We find that although mTOR knockdown severely impairs myogenic differentiation as expected, the knockdown of raptor, as well as Rheb, enhances differentiation. Consistent with a negative role for these proteins in myogenesis, overexpression of raptor or Rheb inhibits C2C12 differentiation. On the other hand, neither knockdown nor overexpression of S6K1 has any effect. Moreover, the enhanced differentiation elicited by raptor or Rheb knockdown is accompanied by increased Akt activation, elevated IRS1 protein levels, and decreased Ser-307 (human Ser-312) phosphorylation on IRS1. Finally, IRS1 knockdown eliminated the enhancement in differentiation elicited by raptor or Rheb knockdown, suggesting that IRS1 is a critical mediator of the myogenic functions of raptor and Rheb. In conclusion, the Rheb-mTOR/raptor pathway negatively regulates myogenic differentiation by suppressing IRS1-PI3K-Akt signaling. These findings underscore the versatility of mTOR signaling in biological regulations and implicate the existence of novel mTOR complexes and/or signaling mechanism in skeletal myogenesis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available