4.6 Article

Mammalian Polo-like Kinase 1-dependent Regulation of the PBIP1-CENP-Q Complex at Kinetochores

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 286, Issue 22, Pages 19744-19757

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M111.224105

Keywords

-

Funding

  1. NCI, National Institutes of Health [Z01 BC 010520]
  2. Korea Basic Science Institute [T3022B]
  3. Ministry of Education, Science and Technology of Korea

Ask authors/readers for more resources

Mammalian polo-like kinase 1 (Plk1) plays a pivotal role during M-phase progression. Plk1 localizes to specific subcellular structures through the targeting activity of the C-terminal polobox domain (PBD). Disruption of the PBD function results in improper bipolar spindle formation, chromosome missegregation, and cytokinesis defect that ultimately lead to the generation of aneuploidy. It has been shown that Plk1 recruits itself to centromeres by phosphorylating and binding to a centromere scaffold, PBIP1 (also called MLF1IP and CENP-U[ 50]) through its PBD. However, how PBIP1 itself is targeted to centromeres and what roles it plays in the regulation of Plk1-dependent mitotic events remain unknown. Here, we demonstrated that PBIP1 directly interacts with CENP-Q, and this interaction was mutually required not only for their stability but also for their centromere localization. Plk1 did not appear to interact with CENP-Q directly. However, Plk1 formed a ternary complex with PBIP1 and CENP-Q through a self-generated p-T78 motif on PBIP1. This complex formation was central for Plk1-dependent phosphorylation of PBIP1-bound CENP-Q and delocalization of the PBIP1-CENP-Q complex from mitotic centromeres. This study reveals a unique mechanism of how PBIP1 mediates Plk1-dependent phosphorylation event onto a third protein, and provides new insights into the mechanism of how Plk1 and its recruitment scaffold, PBIP1-CENP-Q complex, are localized to and delocalized from centromeres.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available