4.7 Article

Analysis of embCAB Mutations Associated with Ethambutol Resistance in Multidrug-Resistant Mycobacterium tuberculosis Isolates from China

Journal

ANTIMICROBIAL AGENTS AND CHEMOTHERAPY
Volume 59, Issue 4, Pages 2045-2050

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/AAC.04933-14

Keywords

-

Funding

  1. National Natural Science Foundation of China [81201348]
  2. National Key Program of Mega Infectious Diseases [2013ZX10003002-001]

Ask authors/readers for more resources

Ethambutol (EMB) plays a pivotal role in the chemotherapy of drug-resistant tuberculosis (TB), including multidrug-resistant tuberculosis (MDR-TB). Resistance to EMB is considered to be caused by mutations in the embCAB operon (embC, embA, and embB). In this study, we analyzed the embCAB mutations among 139 MDR-TB isolates from China and found a possible association between embCAB operon mutation and EMB resistance. Our data indicate that 56.8% of MDR-TB isolates are resistant to EMB, and 82.2% of EMB-resistant isolates belong to the Beijing family. Overall, 110 (79.1%) MDR-TB isolates had at least one mutation in the embCAB operon. The majority of mutations were present in the embB gene and the embA upstream region, which also displayed significant correlations with EMB resistance. The most common mutations occurred at codon 306 in embB (embB306), followed by embB406, embA(-16), and embB497. Mutations at embB306 were associated with EMB resistance. DNA sequencing of embB306-497 was the best strategy for detecting EMB resistance, with 89.9% sensitivity, 58.3% specificity, and 76.3% accuracy. Additionally, embB306 had limited value as a candidate predictor for EMB resistance among MDR-TB infections in China.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available