4.6 Article

Identification of Macrodomain Proteins as Novel O-Acetyl-ADP-ribose Deacetylases

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 286, Issue 15, Pages 13261-13271

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M110.206771

Keywords

-

Funding

  1. Canadian Institutes fin. Health Research [1097737]
  2. Canadian Foundation for Innovation
  3. Genome Canada through Ontario Genomics Institute
  4. GlaxoSmithKline
  5. Karolinska Institutet
  6. Knut and Alice Wallenberg Foundation
  7. Ontario Innovation Trust
  8. Ontario Ministry for Research and Innovation
  9. Merck Co., Inc.
  10. Novartis Research Foundation
  11. Swedish Agency for Innovation Systems
  12. Swedish Foundation for Strategic Research
  13. Wellcome Trust
  14. National Institutes of Health [GM065386]
  15. Cancer Research UK

Ask authors/readers for more resources

Sirtuins are a family of protein lysine deacetylases, which regulate gene silencing, metabolism, life span, and chromatin structure. Sirtuins utilize NAD(+) to deacetylate proteins, yielding O-acetyl-ADP-ribose (OAADPr) as a reaction product. The macrodomain is a ubiquitous protein module known to bind ADP-ribose derivatives, which diverged through evolution to support many different protein functions and pathways. The observation that some sirtuins and macrodomains are physically linked as fusion proteins or genetically coupled through the same operon, provided a clue that their functions might be connected. Indeed, here we demonstrate that the product of the sirtuin reaction OAADPr is a substrate for several related macrodomain proteins: human MacroD1, human MacroD2, Escherichia colt YmdB, and the sirtuin-linked MacroD-like protein from Staphylococcus aureus. In addition, we show that the cell extracts derived from MacroD-deficient Neurospora crassa strain exhibit a major reduction in the ability to hydrolyze OAADPr. Our data support a novel function of macrodomains as OAADPr deacetylases and potential in vivo regulators of cellular OAADPr produced by NAD(+)-dependent deacetylation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available