4.6 Article

Hippo Pathway-independent Restriction of TAZ and YAP by Angiomotin

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 286, Issue 9, Pages 7018-7026

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.C110.212621

Keywords

-

Funding

  1. Agency for Science, Technology and Research (A*STAR), Singapore

Ask authors/readers for more resources

The Hippo pathway restricts the activity of transcriptional co-activators TAZ and YAP by phosphorylating them for cytoplasmic sequestration or degradation. In this report, we describe an independent mechanism for the cell to restrict the activity of TAZ and YAP through interaction with angiomotin (Amot) and angiomotin-like 1 (AmotL1). Amot and AmotL1 were robustly co-immunoprecipitated with FLAG-tagged TAZ, and their interaction is dependent on the WW domain of TAZ and the PPXY motif in the N terminus of Amot. Amot and AmotL1 also interact with YAP via the first WW domain of YAP. Overexpression of Amot and AmotL1 caused cytoplasmic retention of TAZ and suppressed its transcriptional outcome such as the expression of CTGF and Cyr61. Hippo refractory TAZ mutant (S89A) is also negatively regulated by Amot and AmotL1. HEK293 cells express the highest level of Amot and AmotL1 among nine cell lines examined, and silencing the expression of endogenous Amot increased the expression of CTGF and Cyr61 either at basal levels or upon overexpression of exogenous S89A. These results reveal a novel mechanism to restrict the activity of TAZ and YAP through physical interaction with Amot and AmotL1.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available