4.6 Article

KIBRA Protein Phosphorylation Is Regulated by Mitotic Kinase Aurora and Protein Phosphatase 1

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 286, Issue 42, Pages 36304-36315

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M111.246850

Keywords

-

Funding

  1. National Institutes of Health [5P20-RR018759]
  2. National Center for Research Resources
  3. Nebraska Cancer and Smoking Disease Research Program

Ask authors/readers for more resources

Recent genetic studies in Drosophila identified Kibra as a novel regulator of the Hippo pathway, which controls tissue growth and tumorigenesis by inhibiting cell proliferation and promoting apoptosis. The cellular function and regulation of human KIBRA remain largely unclear. Here, we show that KIBRA is a phosphoprotein and that phosphorylation of KIBRA is regulated in a cell cycle-dependent manner with the highest level of phosphorylated KIBRA detected in mitosis. We further demonstrate that the mitotic kinases Aurora-A and -B phosphorylate KIBRA both in vitro and in vivo. We identified the highly conserved Ser(539) as the primary phosphorylation site for Aurora kinases. Moreover, we found that wild-type, but not catalytically inactive, protein phosphatase 1 (PP1) associates with KIBRA. PP1 dephosphorylated Aurora-phosphorylated KIBRA. KIBRA depletion impaired the interaction between Aurora-A and PP1. We also show that KIBRA associates with neurofibromatosis type 2/Merlin in a Ser(539) phosphorylation-dependent manner. Phosphorylation of KIBRA on Ser(539) plays a role in mitotic progression. Our results suggest that KIBRA is a physiological substrate of Aurora kinases and reveal a new avenue between KIBRA/Hippo signaling and the mitotic machinery.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available