4.6 Article

Carboxyl Terminus of Apolipoprotein A-I (ApoA-I) Is Necessary for the Transport of Lipid-free ApoA-I but Not Prelipidated ApoA-I Particles through Aortic Endothelial Cells

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 286, Issue 10, Pages 7744-7754

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M110.193524

Keywords

-

Funding

  1. National Institutes of Health [HL48739]
  2. Swiss National Research Foundation [3100AO-116404/1, 31003A_130836/1]
  3. European Grant [LSHM-CT-2006-0376331]
  4. Swiss National Science Foundation (SNF) [31003A_130836] Funding Source: Swiss National Science Foundation (SNF)

Ask authors/readers for more resources

High density lipoproteins (HDL) and apolipoprotein A-I (apoA-I) must leave the circulation and pass the endothelium to exert their atheroprotective actions in the arterial wall. We previously demonstrated that the transendothelial transport of apoA-I involves ATP-binding cassette transporter (ABC) A1 and re-secretion of lipidated particles. Transendothelial transport of HDL is modulated by ABCG1 and the scavenger receptor BI (SR-BI). We hypothesize that apoA-I transport is started by the ABCA1-mediated generation of a lipidated particle which is then transported by ABCA1-independent pathways. To test this hypothesis we analyzed the endothelial binding and transport properties of initially lipid-free as well as prelipidated apoA-I mutants. Lipid-free apoA-I mutants with a defective carboxyl-terminal domain showed an 80% decreased specific binding and 90% decreased specific transport by aortic endothelial cells. After prior cell-free lipidation of the mutants, the resulting HDL-like particles were transported through endothelial cells by an ABCG1- and SR-BI-dependent process. ApoA-I mutants with deletions of either the amino terminus or both the amino and carboxyl termini showed dramatic increases in nonspecific binding but no specific binding or transport. Prior cell-free lipidation did not rescue these anomalies. Our findings of stringent structure-function relationships underline the specificity of transendothelial apoA-I transport and suggest that lipidation of initially lipid-free apoA-I is necessary but not sufficient for specific transendothelial transport. Our data also support the model of a two-step process for the transendothelial transport of apoA-I in which apoA-I is initially lipidated by ABCA1 and then further processed by ABCA1-independent mechanisms.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available