4.6 Article

miR-200a Regulates SIRT1 Expression and Epithelial to Mesenchymal Transition (EMT)-like Transformation in Mammary Epithelial Cells

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 286, Issue 29, Pages 25992-26002

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M111.229401

Keywords

-

Funding

  1. Flight Attendants Medical Research Institute [FAMRI YCSA072084]
  2. Maryland Stem Cell Research Fund [2010-MSCRFE-0179-00]

Ask authors/readers for more resources

Evidence supports a critical role for microRNAs (miRNAs) in regulation of tissue-specific differentiation and development. Signifying a disruption of these programs, expression profiling has revealed extensive miRNA dysregulation in tumors compared with healthy tissue. The miR-200 family has been established as a key regulator of epithelial phenotype and, as such, is deeply involved in epithelial to mesenchymal transition (EMT) processes in breast cancer. However, the effects of the miR-200 family on transformation of normal mammary epithelial cells have yet to be fully characterized. By examining a TGF-beta driven model of transformation of normal mammary epithelium, we demonstrate that the class III histone deacetylase silent information regulator 1 (SIRT1), a proposed oncogene in breast cancer, is overexpressed upon EMT-like transformation and that epigenetic silencing of miR-200a contributes at least in part to the overexpression of SIRT1. We have established the SIRT1 transcript as subject to regulation by miR-200a, through miR-200a targeting of SIRT1 3'-UTR. We also observed SIRT1 and miR-200a participation in a negative feedback regulatory loop. Restoration of miR-200a or the knockdown of SIRT1 prevented transformation of normal mammary epithelial cells evidenced by decreased anchorage-independent growth and decreased cell migration. Finally, we observed SIRT1 overexpression in association with decreased miR-200a in breast cancer patient samples. These observations provide further evidence for a critical tumor suppressive role of the miR-200 family in breast epithelium in addition to identifying a novel regulatory mechanism, which may contribute to SIRT1 up-regulation in breast cancer.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available