4.6 Article

Role of Zinc Metallothionein-3 (ZnMt3) in Epidermal Growth Factor (EGF)-induced c-Abl Protein Activation and Actin Polymerization in Cultured Astrocytes

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 286, Issue 47, Pages 40847-40856

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M111.245993

Keywords

-

Funding

  1. National Research Foundation of Korea [2005-0093836, 2006-0052326, 2009-0081487]
  2. Korean Government
  3. Korean Health Technology RD Project [A092042]
  4. Ministry of Health and Welfare
  5. National Research Foundation of Korea [2009-0081487, 2005-0093836, 2006-0052326] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

Ask authors/readers for more resources

Recent evidence indicates that zinc plays a major role in neurochemistry. Of the many zinc-binding proteins, metallothionein-3 (Mt3) is regarded as one of the major regulators of cellular zinc in the brain. However, biological functions of Mt3 are not yet well characterized. Recently, we found that lysosomal dysfunction in metallothionein-3 (Mt3)-null astrocytes involves down-regulation of c-Abl. In this study, we investigated the role of Mt3 in c-Abl activation and actin polymerization in cultured astrocytes following treatment with epidermal growth factor (EGF). Compared with wildtype (WT) astrocytes, Mt3-null cells exhibited a substantial reduction in the activation of c-Abl upon treatment with EGF. Consistent with previous studies, activation of c-Abl by EGF induced dissociation of c-Abl from F-actin. Mt3 added to astrocytic cell lysates bound F-actin, augmented F-actin polymerization, and promoted the dissociation of c-Abl from F-actin, suggesting a possible role for Mt3 in this process. Conversely, Mt3-deficient astrocytes showed significantly reduced dissociation of c-Abl from F-actin following EGF treatment. Experiments using various peptide fragments of Mt3 showed that a fragment containing the N-terminal TCPCP motif (peptide 1) is sufficient for this effect. Removal of zinc from Mt3 or pep 1 with tetrakis(2-pyridylmethyl)ethylenediamine abrogated the effect of Mt3 on the association of c-Abl and F-actin, indicating that zinc binding is necessary for this action. These results suggest that ZnMt3 in cultured astrocytes may be a normal component of c-Abl activation in EGF receptor signaling. Hence, modulation of Mt3 levels or distribution may prove to be a useful strategy for controlling cytoskeletal mobilization following EGT stimulation in brain cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available