4.6 Article

Desmin Regulates Airway Smooth Muscle Hypertrophy through Early Growth-responsive Protein-1 and MicroRNA-26a

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 286, Issue 50, Pages 43394-43404

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M111.235127

Keywords

-

Funding

  1. National Science Foundation
  2. Keck Foundation

Ask authors/readers for more resources

Bronchial biopsies of asthmatic patients show a negative correlation between desmin expression in airway smooth muscle cell (ASMC) and airway hyperresponsiveness. We previously showed that desmin is an intracellular load-bearing protein, which influences airway compliance, lung recoil, and airway contractile responsiveness (Shardonofsky, F. R., Capetanaki, Y., and Boriek, A. M. (2006) Am. J. Physiol. Lung Cell. Mol. Physiol. 290, L890-L896). These results suggest that desmin may play an important role in ASMC homeostasis. Here, we report that ASMCs of desmin null mice (ASMCs(Des-/-)) show hypertrophy and up-regulation microRNA-26a (miR-26a). Knockdown of miR-26a in ASMCs(Des-/-) inhibits hypertrophy, whereas enforced expression of miR-26a in ASMCs(Des-/-) induces hypertrophy. We identify that Egr1 (early growth responsive protein-1) activates miR-26a promoter via enhanced phosphorylation of Erk1/2 in ASMCs(Des-/-). We show glycogen synthase kinase-3 beta (GSK-3 beta) as a target gene of miR-26a. Moreover, induction of ASMCs(Des-/-) hypertrophy by the Erk-1/2/Egr-1/miR-26a/GSK-3 beta pathway is consistent in human recombinant ASMCs, which stably suppresses 90% endogenous desmin expression. Overall, our data demonstrate a novel role for desmin as an anti-hypertrophic protein necessary for ASMC homeostasis and identifies desmin as a novel regulator of microRNA.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available