4.6 Article

An Exacerbate-reverse Strategy in Yeast Identifies Histone Deacetylase Inhibition as a Correction for Cholesterol and Sphingolipid Transport Defects in Human Niemann-Pick Type C Disease

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 286, Issue 27, Pages 23842-23851

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M111.227645

Keywords

-

Funding

  1. National Institutes of Health [DK54320, T32 HL07343, DK082712, GM62104]
  2. Ara Parseghian Medical Research Foundation
  3. Dana Angels Research Trust
  4. Irving Institute for Clinical and Translational Science
  5. Ministry of Education, Culture, Science, Sports and Technology of Japan [20790728]
  6. Genome Canada through Ontario Genomics Institute [2004-OGI-3-01]
  7. Canadian Institutes of Health Research [GSP-41567]
  8. Grants-in-Aid for Scientific Research [23591498, 20790728] Funding Source: KAKEN

Ask authors/readers for more resources

Niemann-Pick type C (NP-C) disease is a fatal lysosomal lipid storage disorder for which no effective therapy exists. A genome-wide, conditional synthetic lethality screen was performed using the yeast model of NP-C disease during anaerobiosis, an auxotrophic condition that requires yeast to utilize exogenous sterol. We identified 12 pathways and 13 genes as modifiers of the absence of the yeast NPC1 ortholog (NCR1) and quantified the impact of loss of these genes on sterol metabolism in ncr1 Delta strains grown under viable aerobic conditions. Deletion of components of the yeast NuA4 histone acetyltransferase complex in ncr1 Delta strains conferred anaerobic inviability and accumulation of multiple sterol intermediates. Thus, we hypothesize an imbalance in histone acetylation in human NP-C disease. Accordingly, we show that the majority of the 11 histone deacetylase (HDAC) genes are transcriptionally up-regulated in three genetically distinct fibroblast lines derived from patients with NP-C disease. A clinically approved HDAC inhibitor (suberoylanilide hydroxamic acid) reverses the dysregulation of the majority of the HDAC genes. Consequently, three key cellular diagnostic criteria of NP-C disease are dramatically ameliorated as follows: lysosomal accumulation of both cholesterol and sphingolipids and defective esterification of LDL-derived cholesterol. These data suggest HDAC inhibition as a candidate therapy for NP-C disease. We conclude that pathways that exacerbate lethality in a model organism can be reversed in human cells as a novel therapeutic strategy. This exacerbate-reverse approach can potentially be utilized in any model organism for any disease.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available