4.6 Article

Mapping Flexibility and the Assembly Switch of Cell Division Protein FtsZ by Computational and Mutational Approaches

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 285, Issue 29, Pages 22554-22565

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M110.117127

Keywords

-

Funding

  1. Ministerio de Ciencia e Innovacion [BFU2008-00013]
  2. Comunidad Autonoma de Madrid [S-BIO-0214-2006]
  3. Juan de la Cierva
  4. Federation of European Biochemical Societies
  5. Comunidad de Madrid

Ask authors/readers for more resources

The molecular switch for nucleotide-regulated assembly and disassembly of the main prokaryotic cell division protein FtsZ is unknown despite the numerous crystal structures that are available. We have characterized the functional motions in FtsZ with a computational consensus of essential dynamics, structural comparisons, sequence conservation, and networks of co-evolving residues. Employing this information, we have constructed 17 mutants, which alter the FtsZ functional cycle at different stages, to modify FtsZ flexibility. The mutant phenotypes ranged from benign to total inactivation and included increased GTPase, reduced assembly, and stabilized assembly. Six mutations clustering at the long cleft between the C-terminal beta-sheet and core helix H7 deviated FtsZ assembly into curved filaments with inhibited GTPase, which still polymerize cooperatively. These mutations may perturb the predicted closure of the C-terminal domain onto H7 required for switching between curved and straight association modes and for GTPase activation. By mapping the FtsZ assembly switch, this work also gives insight into FtsZ druggability because the curved mutations delineate the putative binding site of the promising antibacterial FtsZ inhibitor PC190723.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available