4.6 Article

Mammalian Target of Rapamycin (mTOR) and S6 Kinase Down-regulate Phospholipase D2 Basal Expression and Function

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 285, Issue 25, Pages 18991-19001

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M110.111542

Keywords

-

Funding

  1. National Institutes of Health [HL056653]

Ask authors/readers for more resources

The mammalian target of rapamycin (mTOR) and S6 kinase (S6K) pathway is essential for cell differentiation, growth, and survival. Phospholipase D2 (PLD2) plays a key role in mTOR/S6K mitogenic signaling. However, the impact of PLD on mTOR/S6K gene expression is not known. Here we show that interleukin-8 (IL-8) increases mRNA expression levels for PLD2, mTOR, and S6K, with PLD2 preceding mTOR/S6K in time. Silencing of PLD2 gene expression abrogated IL-8-induced mTOR/S6K mRNA expression, whereas silencing of mTOR or S6K gene expression resulted in large (>3-fold and >5-fold, respectively) increased levels of PLD2 RNA, which was paralleled by increases in protein expression and lipase activity. Treatment of cells with 0.5 nM rapamycin induced a similar trend. These results suggest that, under basal conditions, PLD2 expression and concomitant activity is negatively regulated by the mTOR/S6K signaling pathway. Down-regulation of PLD2 was confirmed in differentiated HL-60 leukocytes overexpressing an mTOR-wild type, but not an mTOR kinase-dead construct. At the cellular level, overexpression of mTOR-wild type resulted in lower basal cell migration, which was reversed by treatment with IL-8. We propose that IL-8 reverses an mTOR/S6K-led down-regulation of PLD2 expression and enables PLD2 to fully function as a facilitator for cell migration.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available