4.6 Article

The Yeast Homolog of Heme Oxygenase-1 Affords Cellular Antioxidant Protection via the Transcriptional Regulation of Known Antioxidant Genes

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 286, Issue 3, Pages 2205-2214

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M110.187062

Keywords

-

Funding

  1. Australian Research Council [DP0988470]
  2. University of Sydney Medical Foundation
  3. National Health & Medical Research Council of Australia (NHMRC) [455395]
  4. Sydney Medical School
  5. University of Sydney
  6. Australian Research Council [DP0988470] Funding Source: Australian Research Council

Ask authors/readers for more resources

Heme oxygenase-1 (HO-1) degrades heme and protects cells from oxidative challenge. This antioxidant activity is thought to result from the HO-1 enzymatic activity, manifested by a decrease in the concentration of the pro-oxidant substrate heme, and an increase in the antioxidant product bilirubin. Using a global transcriptional approach, and yeast as a model, we show that HO-1 affords cellular protection via up-regulation of transcripts encoding enzymes involved in cellular antioxidant defense, rather than via its oxygenase activity. Like mammalian cells, yeast responds to oxidative stress by expressing its HO-1 homolog and, compared with the wild type, heme oxygenase-null mutant cells have increased sensitivity toward oxidants that is rescued by overexpression of human HO-1 or its yeast homolog. Increased oxidant sensitivity of heme oxygenase-null mutant cells is explained by a decrease in the expression of the genes encoding gamma-glutamylcysteine synthetase, glutathione peroxidase, catalase, and methionine sulfoxide reductase, because overexpression of any of these genes affords partial, and overexpression of all four genes provides complete, protection to the null mutant. Genes encoding antioxidant enzymes represent only a small portion of the 480 differentially expressed transcripts in heme oxygenase-null mutants. Transcriptional regulation may be explained by the nuclear localization of heme oxygenase observed in oxidant-challenged cells. Our results challenge the notion that HO-1 functions simply as a catabolic and antioxidant enzyme. They indicate much broader functions for HO-1, the unraveling of which may help explain the multiple biological responses reported in animals as a result of altered HO-1 expression.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available