4.6 Article

Identification of a Key Residue Determining Substrate Affinity in the Yeast Glucose Transporter Hxt7 A TWO-DIMENSIONAL COMPREHENSIVE STUDY

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 285, Issue 34, Pages 26263-26268

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M110.149716

Keywords

-

Funding

  1. Ministry of Education, Culture, Sports, Science, and Technology of Japan
  2. Teikyo University

Ask authors/readers for more resources

We previously identified Asn(331) in transmembrane segment 7 (TM7) as a key residue determining substrate affinity in Hxt2, a moderately high-affinity facilitative glucose transporter of Saccharomyces cerevisiae. To gain further insight into the structural basis of substrate recognition by yeast glucose transporters, we have now studied Hxt7, whose affinity for glucose is the highest among the major hexose transporters. The functional role of Asp(340) in Hxt7, the residue corresponding to Asn(331) of Hxt2, was examined by replacing it with each of the other 19 amino acids. Such replacement of Asp(340) generated transporters with various affinities for glucose, with the affinity of the Cys(340) mutant surpassing that of the wild-type Hxt7. To examine the structural role of Asp(340) in the substrate translocation pathway, we performed cysteine-scanning mutagenesis of the 21 residues in TM7 of a functional Cys-less Hxt7 mutant in conjunction with exposure to the hydrophilic sulfhydryl reagent p-chloromercuribenzenesulfonate (pCMBS). The transport activity of the D340C mutant of Cys-less Hxt7, in which Asp(340) is replaced with Cys, was completely inhibited by pCMBS, indicating that Asp(340) is located in a water-accessible position. This D340C mutant showed a sensitivity to pCMBS that was similar to 70 times that of the wild-type Hxt7, and it was protected from pCMBS inhibition by the substrates D-glucose and 2-deoxy-D-glucose but not by L-glucose. These results indicate that Asp(340) is situated at or close to a substrate recognition site and is a key residue determining high-affinity glucose transport by Hxt7, supporting the notion that yeast glucose transporters share a common mechanism for substrate recognition.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available