4.6 Article

Serotonergic 5-HT2B Receptor Controls Tissue-nonspecific Alkaline Phosphatase Activity in Osteoblasts via Eicosanoids and Phosphatidylinositol-specific Phospholipase C

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 285, Issue 34, Pages 26066-26073

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M109.073791

Keywords

-

Funding

  1. Centre National de la Recherche Scientifique
  2. Institut National de la Sante et de la Recherche Medicale

Ask authors/readers for more resources

In previous studies, we observed that mice knocked out for the serotonin-2B receptor (5-HT2BR) show defects in bone homeostasis. The present work focuses on the downstream targets relaying the anabolic function of this receptor in osteoblasts. A functional link between the 5-HT2BR and the activity of the tissue-nonspecific alkaline phosphatase (TNAP) is established using the C1 osteoprogenitor cell line. During C1 osteogenic differentiation, both 5-HT2BR and TNAP mRNA translations are delayed with respect to extracellular matrix deposition. Once the receptor is expressed, it constitutively controls TNAP activity at a post-translational level along the overall period of mineral deposition. Indeed, pharmacological inhibition of the 5-HT2BR intrinsic activity or shRNA-mediated 5-HT2BR knockdown prevents TNAP activation, but not its mRNA translation. In contrast, agonist stimulation of the receptor further increases TNAP activity during the initial mineralization phase. Building upon our previous observations that the 5-HT2BR couples with the phospholipase A2 pathway and prostaglandin production at the beginning of mineral deposition, we show that the 5-HT2BR controls leukotriene synthesis via phospholipase A2 at the terminal stages of C1 differentiation. These two 5-HT2BR-dependent eicosanoid productions delineate distinct time windows of TNAP regulation during the osteogenic program. Finally, prostaglandins or leukotrienes are shown to relay the post-translational activation of TNAP via stimulation of the phosphatidylinositol-specific phospholipase C. In agreement with the above findings, primary calvarial osteoblasts from 5-HT2BR-null mice exhibit defects in TNAP activity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available