4.6 Article

The E3 Ubiquitin Ligase cIAP1 Binds and Ubiquitinates Caspase-3 and-7 via Unique Mechanisms at Distinct Steps in Their Processing

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 284, Issue 19, Pages 12772-12782

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M807550200

Keywords

-

Funding

  1. NCI [CA129521]
  2. American Cancer Society [RSG-05-029-01-CCG]
  3. PhRMA Foundation
  4. Medical Research Council [MC_U132615750] Funding Source: researchfish
  5. MRC [MC_U132615750] Funding Source: UKRI

Ask authors/readers for more resources

Inhibitor of apoptosis (IAP) proteins are widely expressed throughout nature and suppress cell death under a variety of circumstances. X-linked IAP, the prototypical IAP in mammals, inhibits apoptosis largely through direct inhibition of the initiator caspase-9 and the effector caspase-3 and -7. Two additional IAP family members, cellular IAP1 (cIAP1) and cIAP2, were once thought to also inhibit caspases, but more recent studies have suggested otherwise. Here we demonstrate that cIAP1 does not significantly inhibit the proteolytic activities of effector caspases on fluorogenic or endogenous substrates. However, cIAP1 does bind to caspase-3 and -7 and does so, remarkably, at distinct steps prior to or following the removal of their prodomains, respectively. Indeed, cIAP1 bound to an exposed IAP-binding motif, AKPD, on the N terminus of the large subunit of fully mature caspase-7, whereas cIAP1 bound to partially processed caspase-3 in a manner that required its prodomain and cleavage between its large and small subunits but did not involve a classical IAP-binding motif. As a ubiquitin-protein isopeptide ligase, cIAP1 ubiquitinated caspase-3 and -7, concomitant with binding, in a reaction catalyzed by members of the UbcH5 subfamily (ubiquitin carrier protein/ubiquitin-conjugating enzymes), and in the case of caspase-3, differentially by UbcH8. Moreover, wild-type caspase-7 and a chimeric caspase-3 (bearing the AKPD motif) were degraded in vivo in a proteasome-dependent manner. Thus, cIAPs likely suppress apoptosis, at least in part, by facilitating the ubiquitination and turnover of active effector caspases in cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available