4.6 Article

AMP-activated Protein Kinase Is Involved in Neural Stem Cell Growth Suppression and Cell Cycle Arrest by 5-Aminoimidazole-4-carboxamide-1-β-D-ribofuranoside and Glucose Deprivation by Down-regulating Phospho-retinoblastoma Protein and Cyclin D

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 284, Issue 10, Pages 6175-6184

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M806887200

Keywords

-

Funding

  1. National Natural Science Foundation of China [30800559]
  2. National Basic Research Program of China [2007CB914201, 2009CB940900]
  3. Shanghai Commission of Science and Technology [08ZR1403700]

Ask authors/readers for more resources

The fate of neural stem cells (NSCs), including their proliferation, differentiation, survival, and death, is regulated by multiple intrinsic signals and the extrinsic environment. We had previously reported that 5-aminoimidazole-4-carboxamide-1-beta D-ribofuranoside (AICAR) directly induces astroglial differentiation of NSCs by activation of the Janus kinase (JAK)/ Signal transducer and activator of transcription 3 (STAT3) pathway independently of AMP-activated protein kinase (AMPK). Here, we reported the observation that AICAR inhibited NSC proliferation and its underlying mechanism. Analysis of caspase activity and cell cycle showed that AICAR induced G(1)/G(0) cell cycle arrest in NSCs, associated with decreased levels of poly(ADP-ribose) polymerase, phosphoretinoblastoma protein (Rb), and cyclin D but did not cause apoptosis. Iodotubericidin and Compound C, inhibitors of adenosine kinase and AMPK, respectively, or overexpression of a dominant-negative mutant of AMPK, but not JAK inhibitor, were able to reverse the anti-proliferative effect of AICAR. Glucose deprivation also activated the AMPK pathway, induced G(0)/G(1) arrest, and suppressed the proliferation of NSCs, an effect associated with decreased levels of phospho-Rb and cyclin D protein. Furthermore, Compound C and overexpression of dominant-negative AMPK in C17.2 NSCs could block the glucose deprivation-mediated down-regulation of cyclin D and partially reverse the suppression of proliferation. These results suggest that AICAR and glucose deprivation might induce G(1)/G(0) cell cycle arrest and suppress proliferation of NSCs via phospho-Rb and cyclin D down-regulation. AMPK, but not JAK/STAT3, activation is key for this inhibitory effect and may play an important role in the responses of NSCs to metabolic stresses such as glucose deprivation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available