4.6 Article

Subcellular Origin of Sphingosine 1-Phosphate Is Essential for Its Toxic Effect in Lyase-deficient Neurons

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 284, Issue 17, Pages 11346-11353

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M807336200

Keywords

-

Funding

  1. National Institutes of Health, NIDDK Intramural Research Program
  2. NIH [GM069338]
  3. Deutsche Forschungsgemeinschaft [EC 118/2-2]
  4. Fonds voor Wetenschappelijk Onderzoek-Vlaanderen [G.0405.02]

Ask authors/readers for more resources

Cerebellar granule cells from sphingosine 1-phosphate (S1P) lyase-deficient mice were used to study the toxicity of this potent sphingolipid metabolite in terminally differentiated postmitotic neurons. Based on earlier findings with the lyase-stable, semi-synthetic, cis-4-methylsphingosine phosphate, we hypothesized that accumulation of S1P above a certain threshold induces neuronal apoptosis. The present studies confirmed this conclusion and further revealed that for S1P to induce apoptosis in lyase-deficient neurons it must also be produced by sphingosine-kinase2 (SK2). These conclusions are based on the finding that incubation of lyase-deficient neurons with either sphingosine or S1P results in a similar elevation in cellular S1P; however, only S1P addition to the culture medium induces apoptosis. This was not due to S1P acting on the S1P receptor but to hydrolysis of S1P to sphingosine that was phosphorylated by the cells, as described before for cis-4-methylsphingosine. Although the cells produced S1P from both exogenously added sphingosine as well as sphingosine derived from exogenous S1P, the S1P from these two sources were not equivalent, because the former was primarily produced by SK1, whereas the latter was mainly formed by SK2 (as also was cis-4-methylsphingosine phosphate), based on studies in neurons lacking SK1 or SK2 activity. Thus, these investigations show that, due to the existence of at least two functionally distinct intracellular origins for S1P, exogenous S1P can be neurotoxic. In this model, S1P accumulated due to a defective lyase, however, this cause of toxicity might also be important in other cases, as illustrated by the neurotoxicity of cis-4-methylsphingosine phosphate.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available