4.6 Article

A Function for the RING Finger Domain in the Allosteric Control of MDM2 Conformation and Activity

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 284, Issue 17, Pages 11517-11530

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M809294200

Keywords

-

Funding

  1. Cancer Research UK
  2. Polish Ministry of Science and Higher Education [NN301 032534]

Ask authors/readers for more resources

The MDM2 oncoprotein plays multiple regulatory roles in the control of p53-dependent gene expression. A picture of MDM2 is emerging where structurally discrete but interdependent functional domains are linked through changes in conformation. The domain structure includes: (i) a hydrophobic pocket at the N terminus of MDM2 that is involved in both its transrepressor and E3-ubiqutin ligase functions, (ii) a central acid domain that recognizes a ubiquitination signal in the core DNA binding domain of p53, and (iii) a C-terminal C2H2C4 RING finger domain that is required for E2 enzyme-binding and ATP-dependent molecular chaperone activity. Here we show that the binding affinity of MDM2s hydrophobic pocket can be regulated through the RING finger domain and that increases in pocket affinity are reflected by a gain in MDM2 transrepressor activity. Thus, mutations within the RING domain that affect zinc coordination, but not one that inhibits ATP binding, produce MDM2 proteins that have a higher affinity for the BOX-I transactivation domain of p53 and a reduced I-0.5 for p53 transrepression. An allosteric model for regulation of the hydrophobic pocket is supported by differences in protein conformation and pocket accessibility between wild-type and the RING domain mutant MDM2 proteins. Additionally the data demonstrate that the complex relationship between different domains of MDM2 can impact on the efficacy of anticancer drugs directed toward its hydrophobic pocket.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available