4.6 Article

Identification of PpoA from Aspergillus nidulans as a Fusion Protein of a Fatty Acid Heme Dioxygenase/Peroxidase and a Cytochrome P450

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 284, Issue 18, Pages 11792-11805

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M809152200

Keywords

-

Funding

  1. German Research Foundation (IRTG 1422). [IRTG 1422]

Ask authors/readers for more resources

The homothallic ascomycete Aspergillus nidulans serves as model organism for filamentous fungi because of its ability to propagate with both asexual and sexual life cycles, and fatty acid-derived substances regulate the balance between both cycles. These so-called psi (precocious sexual inducer) factors are produced by psi factor-producing oxygenases (Ppo enzymes). Bioinformatic analysis predicted the presence of two different heme domains in Ppo proteins: in the N-terminal region, a fatty acid heme dioxygenase/peroxidase domain is predicted, whereas in the C-terminal region, a P450 heme thiolate domain is predicted. To analyze the reaction catalyzed by Ppo enzymes, PpoA was expressed in Escherichia coli as an active enzyme. The protein was purified by 62-fold and identified as a homotetrameric ferric heme protein that metabolizes mono-as well as polyunsaturated C-16 and C-18 fatty acids at pH similar to 7.25. The presence of thiolate-ligated heme was confirmed on the basis of sequence alignments and the appearance of a characteristic 450 nm CO-binding spectrum. Studies on its reaction mechanism revealed that PpoA uses different heme domains to catalyze two separate reactions. Within the heme peroxidase domain, linoleic acid is oxidized to (8R)-hydroperoxyoctadecadienoic acid by abstracting a H-atom from C-8 of the fatty acid, yielding a carbon-centered radical that reacts with molecular dioxygen. In the second reaction step, 8-hydroperoxyoctadecadienoic acid is isomerized within the P450 heme thiolate domain to 5,8-dihydroxyoctadecadienoic acid. We identify PpoA as a bifunctional P450 fusion protein that uses a previously unknown reaction mechanism for forming psi factors.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available