4.6 Article

Characterization of Chlorophenol 4-Monooxygenase (TftD) and NADH:FAD Oxidoreductase (TftC) of Burkholderia cepacia AC1100

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 285, Issue 3, Pages 2014-2027

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M109.056135

Keywords

-

Funding

  1. National Science Foundation [MCB-0323167]
  2. United States Department of Agriculture, Agricultural Research Service/Cooperative State Research, Education
  3. Extension Service, American Heart Association [0850084Z]
  4. Murdock Charitable Trust
  5. Direct For Biological Sciences
  6. Div Of Molecular and Cellular Bioscience [1021148] Funding Source: National Science Foundation

Ask authors/readers for more resources

Burkholderia cepacia AC1100 completely degrades 2,4,5-trichlorophenol, in which an FADH(2)-dependent monooxygenase (TftD) and an NADH: FAD oxidoreductase (TftC) catalyze the initial steps. TftD oxidizes 2,4,5-trichlorophenol (2,4,5-TCP) to 2,5-dichloro-p-benzoquinone, which is chemically reduced to 2,5-dichloro-p-hydroquinone (2,5-DiCHQ). Then, TftD oxidizes the latter to 5-chloro-2-hydroxy-p-benzoquinone. In those processes, TftC provides all the required FADH(2). We have determined the crystal structures of dimeric TftC and tetrameric TftD at 2.0 and 2.5 angstrom resolution, respectively. The structure of TftC was similar to those of related flavin reductases. The stacked nicotinamide: isoalloxazine rings in TftC and sequential reaction kinetics suggest that the reduced FAD leaves TftC after NADH oxidation. The structure of TftD was also similar to the known structures of FADH(2)-dependent monooxygenases. Its His-289 residue in the re-side of the isoalloxazine ring is within hydrogen bonding distance with a hydroxyl group of 2,5-DiCHQ. An H289 A mutation resulted in the complete loss of activity toward 2,5-DiCHQ and a significant decrease in catalytic efficiency toward 2,4,5-TCP. Thus, His-289 plays different roles in the catalysis of 2,4,5-TCP and 2,5-DiCHQ. The results support that free FADH(2) is generated by TftC, and TftD uses FADH(2) to separately transform 2,4,5-TCP and 2,5-DiCHQ. Additional experimental data also support the diffusion of FADH(2) between TftC and TftD without direct physical interaction between the two enzymes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available