4.6 Article

p53 Acetylation Is Crucial for Its Transcription-independent Proapoptotic Functions

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 284, Issue 17, Pages 11171-11183

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M809268200

Keywords

-

Funding

  1. National Institutes of Health
  2. American Cancer Society and Flight Attendant Medical Research Institute

Ask authors/readers for more resources

Acetylation of p53 at carboxyl-terminal lysine residues enhances its transcriptional activity associated with cell cycle arrest and apoptosis. Here we demonstrate that p53 acetylation at Lys-320/Lys-373/Lys-382 is also required for its transcription-independent functions in BAX activation, reactive oxygen species production, and apoptosis in response to the histone deacetylase inhibitors (HDACi) suberoylanilide hydroxamic acid and LAQ824. Knock-out of p53 markedly reduced HDACi-induced apoptosis. Unexpectedly, expression of transactivation-deficient p53 variants sensitized p53-null cells to HDACi-mediated BAX-dependent apoptosis, whereas knockdown of endogenous mutant p53 in cancer cells reduced HDACi-mediated cytotoxicity. Evaluation of the mechanisms controlling this response led to the discovery of a novel interaction between p53 and Ku70. The association between these two proteins was acetylation-independent, but acetylation of p53 could prevent and disrupt the Ku70-BAX complex and enhance apoptosis. These results suggest a new mechanism of acetylated p53 transcription-independent regulation of apoptosis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available