4.6 Review

Proinsulin and the Genetics of Diabetes Mellitus

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 284, Issue 29, Pages 19159-19163

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.R109.009936

Keywords

-

Funding

  1. National Institutes of Health [DK40949, DK0697674]
  2. American Diabetes Association

Ask authors/readers for more resources

Insulin plays a central role in the regulation of vertebrate metabolism. The hormone, the post-translational product of a single-chain precursor, is a globular protein containing two chains, A (21 residues) and B (30 residues). Recent advances in human genetics have identified dominant mutations in the insulin gene causing permanent neonatal-onset DM2 (1-4). The mutations are predicted to block folding of the precursor in the ER of pancreatic beta-cells. Although expression of the wild-type allele would in other circumstances be sufficient to maintain homeostasis, studies of a corresponding mouse model (5-7) suggest that the misfolded variant perturbs wild-type biosynthesis (8, 9). Impaired beta-cell secretion is associated with ER stress, distorted organelle architecture, and cell death (10). These findings have renewed interest in insulin biosynthesis (11-13) and the structural basis of disulfide pairing (14-19). Protein evolution is constrained not only by structure and function but also by susceptibility to toxic misfolding.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available