4.6 Article

β-Actin Association with Endothelial Nitric-oxide Synthase Modulates Nitric Oxide and Superoxide Generation from the Enzyme

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 285, Issue 7, Pages 4319-4327

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M109.063172

Keywords

-

Funding

  1. National Institutes of Health [R01HL088261]
  2. Flight Attendants Medical Research Institute [032040, 072104]
  3. American Heart Association [0555322B, 0855338E]

Ask authors/readers for more resources

Protein-protein interactions represent an important post-translational mechanism for endothelial nitric-oxide synthase (eNOS) regulation. We have previously reported that beta-actin is associated with eNOS oxygenase domain and that association of eNOS with beta-actin increases eNOS activity and nitric oxide (NO) production. In the present study, we found that beta-actin-induced increase in NO production was accompanied by decrease in superoxide formation. A synthetic actin-binding sequence (ABS) peptide 326 with amino acid sequence corresponding to residues 326-333 of human eNOS, one of the putative ABSs, specifically bound to beta-actin and prevented eNOS association with beta-actin in vitro. Peptide 326 also prevented beta-actin-induced decrease in superoxide formation and increase in NO and L-citrulline production. A modified peptide 326 replacing hydrophobic amino acids leucine and tryptophan with neutral alanine was unable to interfere with eNOS-beta-actin binding and to prevent beta-actin-induced changes in NO and superoxide formation. Site-directed mutagenesis of the actin-binding domain of eNOS replacing leucine and tryptophan with alanine yielded an eNOS mutant that exhibited reduced eNOS-beta-actin association, decreased NO production, and increased superoxide formation in COS-7 cells. Disruption of eNOS-beta-actin interaction in endothelial cells using ABS peptide 326 resulted in decreased NO production, increased superoxide formation, and decreased endothelial monolayer wound repair, which was prevented by PEG-SOD and NO donor NOC-18. Taken together, this novel finding indicates that beta-actin binding to eNOS through residues 326-333 in the eNOS protein results in shifting the enzymatic activity from superoxide formation toward NO production. Modulation of NO and superoxide formation from eNOS by beta-actin plays an important role in endothelial function.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available