4.6 Article

Pertussis Toxin-sensitive Signaling of Melanocortin-4 Receptors in Hypothalamic GT1-7 Cells Defines Agouti-related Protein as a Biased Agonist

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 284, Issue 39, Pages 26411-26420

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M109.039339

Keywords

-

Funding

  1. Bundesministerium fur Bildung und Forschung
  2. Nationales Genomforschungsnetzwerk Network [N2NV-S30T09]

Ask authors/readers for more resources

Melanocortin-4 receptor (MC4R)-induced anorexigenic signaling in the hypothalamus controls body weight and energy homeostasis. So far, MC4R-induced signaling has been exclusively attributed to its coupling to G(s) proteins. In line with this monogamous G protein coupling profile, most MC4R mutants isolated from obese individuals showed a reduced ability to activate G(s). However, some mutants displayed enhanced G(s) coupling, suggesting that signaling pathways independent of G(s) may be involved in MC4R-mediated anorexigenic signaling. Here we report that the G(s) signaling-deficient MC4R-D90N mutant activates G proteins in a pertussis toxin-sensitive manner, indicating that this mutant is able to selectively interact with G(i/o) proteins. Analyzing a hypothalamic cell line (GT1-7 cells), we observed activation of pertussis toxin-sensitive G proteins by the wild-type MC4R as well, reflecting multiple coupling of the MC4R to G(s) and G(i/o) proteins in an endogenous cell system. Surprisingly, the agouti-related protein, which has been classified as a MC4R antagonist, selectively activates G(i/o) signaling in GT1-7 cells. Thus, the agouti-related protein antagonizes melanocortin-dependent G(s) activation not only by competitive antagonism but additionally by initiating G(i/o) protein-induced signaling as a biased agonist.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available