4.6 Article

Role of Two Strictly Conserved Residues in Nucleotide Flipping and N-Glycosylic Bond Cleavage by Human Thymine DNA Glycosylase

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 284, Issue 52, Pages 36680-36688

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M109.062356

Keywords

-

Funding

  1. National Institutes of Health [R01-GM72711]
  2. University of Maryland Marlene
  3. Stewart Greenebaum Cancer Center

Ask authors/readers for more resources

Thymine DNA glycosylase (TDG) promotes genomic integrity by excising thymine from mutagenic G.T mismatches arising by deamination of 5-methylcytosine, and follow-on base excision repair enzymes restore a G.C pair. TDG cleaves the N-glycosylic bond of dT and some other nucleotides, including 5-substituted 2'-deoxyuridine analogs, once they have been flipped from the helix into its active site. We examined the role of two strictly conserved residues; Asn(140), implicated in the chemical step, and Arg(275), implicated in nucleotide flipping. The N140A variant binds substrate DNA with the same tight affinity as wild-type TDG, but it has no detectable base excision activity for a G.T substrate, and its excision rate is vastly diminished (by similar to 10(4.4)-fold) for G.U, G.FU, and G.BrU substrates. Thus, Asn(140) does not contribute substantially to substrate binding but is essential for the chemical step, where it stabilizes the transition state by similar to 6 kcal/mol (compared with 11.6 kcal/mol stabilization provided by TDG overall). Our recent crystal structure revealed that Arg(275) penetrates the DNA minor groove, filling the void created by nucleotide flipping. We found that the R275A and R275L substitutions weaken substrate binding and substantially decrease the base excision rate for G.T and G.BrU substrates. Our results indicate that Arg(275) promotes and/or stabilizes nucleotide flipping, a role that is most important for target nucleotides that are relatively large (dT and bromodeoxyuridine) and/or have a stable N-glycosylic bond (dT). Arg(275) does not contribute substantially to the binding of TDG to abasic DNA product, and it cannot account for the slow product release exhibited by TDG.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available