4.6 Article

The Clavesin Family, Neuron-specific Lipid-and Clathrin-binding Sec14 Proteins Regulating Lysosomal Morphology

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 284, Issue 40, Pages 27646-27654

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M109.034884

Keywords

-

Funding

  1. Canadian Institutes of Health Research (CIHR) [MOP-62684]

Ask authors/readers for more resources

Clathrin-coated vesicles (CCVs) originating from the trans-Golgi network (TGN) provide a major transport pathway from the secretory system to endosomes/lysosomes. Herein we describe paralogous Sec14 domain-bearing proteins, clavesin 1/CRALBPL and clavesin 2, identified through a proteomic analysis of CCVs. Clavesins are enriched on CCVs and form a complex with clathrin heavy chain (CHC) and adaptor protein-1, major coat components of TGN-derived CCVs. The proteins co-localize with markers of endosomes and the TGN as well as with CHC and adaptor protein-1. A membrane mimic assay using the Sec14 domain of clavesin 1 reveals phosphatidylinositol 3,5-bisphosphate as a specific lipid partner. Phosphatidylinositol 3,5-bisphosphate is localized to late endosomes/lysosomes, and interestingly, isoform-specific knockdown of clavesins in neurons using lentiviral delivery of interfering RNA leads to enlargement of a lysosome-associated membrane protein 1-positive membrane compartment with no obvious influence on the CCV machinery at the TGN. Since clavesins are expressed exclusively in neurons, this new protein family appears to provide a unique neuron-specific regulation of late endosome/lysosome morphology.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available