4.6 Article

Protein Kinase Cδ Supports Survival of MDA-MB-231 Breast Cancer Cells by Suppressing the ERK1/2 Pathway

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 284, Issue 48, Pages 33456-33465

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M109.036186

Keywords

-

Funding

  1. Swedish Cancer Society
  2. Swedish Research Council
  3. Children's Cancer Foundation of Sweden
  4. Malmo University Hospital Research Funds
  5. Kock Foundation
  6. Crafoord Foundation
  7. Ollie and Elof Ericsson Foundation
  8. Gunnar Nilsson Foundation

Ask authors/readers for more resources

Mechanisms that mediate apoptosis resistance are attractive therapeutic targets for cancer. Protein kinase C delta (PKC delta) is considered a pro-apoptotic factor in many cell types. In breast cancer, however, it has shown both pro-survival and pro-apoptotic effects. Here, we report for the first time that down-regulation of PKC delta per se leads to apoptosis of MDA-MB-231 cells. Inhibition of MEK1/2 by either PD98059 or U0126 suppressed the induction of apoptosis of PKC delta-depleted MDA-MB-231 cells but did not support survival of MCF-7 or MDA-MB-468 cells. Basal ERK1/2 phosphorylation was substantially higher in MDA-MB-231 cells than in the other cell lines. PKC delta depletion led to even higher ERK1/2 phosphorylation levels and also to lower expression levels of the ERK1/2 phosphatase MKP3. Depletion of MKP3 led to apoptosis and higher levels of ERK1/2 phosphorylation, suggesting that this may be a mechanism mediating the effect of PKC delta down-regulation. However, PKC delta silencing also induced increased MEK1/2 phosphorylation, indicating that PKC delta regulates ERK1/2 phosphorylation both upstream and downstream. Moreover, PKC delta silencing led to increased levels of the E3 ubiquitin ligase Nedd4, which is a potential regulator of MKP3, because down-regulation led to increased MKP3 levels. Our results highlight PKC delta as a potential target for therapy of breast cancers with high activity of the ERK1/2 pathway.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available