4.6 Article

Desmocollin 3-mediated Binding Is Crucial for Keratinocyte Cohesion and Is Impaired in Pemphigus

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 284, Issue 44, Pages 30556-30564

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M109.024810

Keywords

-

Funding

  1. Deutsche Forschungsgemeinschaft [SFB487, TP B5, B2]

Ask authors/readers for more resources

Desmocollin (Dsc) 1-3 and desmoglein (Dsg) 1-4, transmembrane proteins of the cadherin family, form the adhesive core of desmosomes. Here we provide evidence that Dsc3 homo- and heterophilic trans-interaction is crucial for epidermal integrity. Single molecule atomic force microscopy (AFM) revealed homophilic trans-interaction of Dsc3. Dsc3 displayed heterophilic interaction with Dsg1 but not with Dsg3. A monoclonal antibody targeted against the extracellular domain reduced homophilic and heterophilic binding as measured by AFM, caused intraepidermal blistering in a model of human skin, and a loss of intercellular adhesion in cultured keratinocytes. Because autoantibodies against Dsg1 are associated with skin blistering in pemphigus, we characterized the role of Dsc3 binding for pemphigus pathogenesis. In contrast to AFM experiments, laser tweezer trapping revealed that pemphigus autoantibodies reduced binding of Dsc3-coated beads to the keratinocyte cell surface. These data indicate that loss of heterophilic Dsc3/Dsg1 binding may contribute to pemphigus skin blistering.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available