4.6 Article

Different Transcription Factors Regulate nestin Gene Expression during P19 Cell Neural Differentiation and Central Nervous System Development

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 284, Issue 12, Pages 8160-8173

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M805632200

Keywords

-

Funding

  1. National Natural Science Foundation of China [30623003, 30721065, 30830034]
  2. National Key Basic Research and Development Program of China [2005CB522704, 2006CB943902, 2007CB947101, 2008KR0695, 2009CB941100, 2006CB943900, 2007CB947102]
  3. National High-Tech Research and Development Program of China [2006AA02Z186]
  4. Shanghai Key Project of Basic Science Research [06DJ14001, 06DZ22032, 08DJ1400501]
  5. Council of Shanghai Municipal Government for Science and Technology [05814578, 07pj14098]

Ask authors/readers for more resources

Nestin is a molecular marker for neural progenitor cells. Rat and human nestin genes possess a central nervous system-specific enhancer within their second introns. However, the transcription factors that bind to the nestin enhancer have not been fully elucidated. Here, we show that the second intron of the mouse nestin gene is sufficient to drive reporter gene expression in the developing nervous system. The core sequence of this central nervous system-specific enhancer localizes to the 3' 320-bp region. The cis-elements for Sox and POU family transcription factors and the hormone-responsive element are essential for nestin expression during embryonic carcinoma P19 cell neural differentiation and in the developing chick neural tube. Interestingly, different transcription factors bind to the nestin enhancer at different stages of P19 cell neural differentiation and central nervous system development. Sox2 and SF1 may mediate basal nestin expression in undifferentiated P19EC cells, whereas Sox2, Brn1, and Brn2 bind to the enhancer in P19 neural progenitor cells. Similarly, in vivo, Oct1 binds to the nestin enhancer in embryonic day 8.5 (E8.5) mouse embryos, and Oct1, Brn1, and Brn2 bind to this enhancer in E10.5 and E12.5 mouse embryos. Our studies therefore suggest a temporal coordination of transcription factors in determining nestin gene expression.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available