4.6 Article

Mdm2 Directs the Ubiquitination of β-Arrestin-sequestered cAMP Phosphodiesterase-4D5

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 284, Issue 24, Pages 16170-16182

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M109.008078

Keywords

-

Funding

  1. Medical Research Council (UK) [G0600765]
  2. European Union [LSHB-CT-2006-037189]
  3. Fondation Leducq [06CVD02]
  4. Medical Research Council [G0600765] Funding Source: researchfish
  5. MRC [G0600765] Funding Source: UKRI

Ask authors/readers for more resources

beta-Arrestin plays a key role in regulating beta(2)-adrenoreceptor signaling by interdicting activation of adenylyl cyclase and selectively sequestering cAMP phosphodiesterase-4D5 (PDE4D5) for delivery of an active cAMP degrading system to the site of cAMP synthesis. Here we show that the beta-agonist, isoprenaline, triggers the rapid and transient ubiquitination of PDE4D5 in primary cardiomyocytes, mouse embryo fibroblasts, and HEK293B2 cells constitutively expressing beta(2)-adrenoceptors. Reconstitution analyses in beta-arrestin1/2 double knockout cells plus small interference RNA knockdown studies indicate that a beta-arrestin-scaffolded pool of the E3-ubiquitin ligase, Mdm2, mediates PDE4D5 ubiquitination. Critical for this is the ubiquitin-interacting motif located in the extreme C terminus of PDE4D5, which is specific to the PDE4D sub-family. In vitro SUMOylation of a PDE4D5 spot-immobilized peptide array, followed by a mutagenesis strategy, showed that PDE4D5 ubiquitination occurs at Lys-48, Lys- 53, and Lys-78, which are located within its isoform-specific N-terminal region, as well as at Lys-140 located within its regulatory UCR1 module. We suggest that mono-ubiquitination at Lys-140 primes PDE4D5 for a subsequent cascade of polyubiquitination occurring within its isoform-specific N-terminal region at Lys-48, Lys-53, and Lys-78. PDE4D5 interacts with a non-ubiquitinated beta-arrestin sub-population that is likely to be protected from Mdm2-mediated ubiquitination due to steric hindrance caused by sequestered PDE4D5. Ubiquitination of PDE4D5 elicits an increase in the fraction of PDE4D5 sequestered by beta-arrestin in cells, thereby contributing to the fidelity of PDE4D5-beta-arrestin interaction, as well as decreasing the fraction of PDE4D5 sequestered by the scaffolding protein, RACK1.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available