4.6 Article

Unique Ligand Selectivity of the GPR92/LPA5 Lysophosphatidate Receptor Indicates Role in Human Platelet Activation

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 284, Issue 25, Pages 17304-17319

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M109.003194

Keywords

-

Funding

  1. National Institutes of Health [CA92160, HL79004, HL084007]
  2. NCI
  3. American Heart Association [0625325B, 0715125B]
  4. Graduate Program of the Bavarian Eliteforderungsgesetz Deutsche Forschungsgemeinschaft [Si 274/9-3]

Ask authors/readers for more resources

Lysophosphatidic acid (LPA) is a ligand for LPA(1-3) of the endothelial differentiation gene family G-protein-coupled receptors, and LPA(4-8) is related to the purinergic family G-protein-coupled receptor. Because the structure-activity relationship (SAR) of GPR92/LPA(5) is limited and whether LPA is its preferred endogenous ligand has been questioned in the literature, in this study we applied a combination of computational and experimental site-directed mutagenesis of LPA(5) residues predicted to interact with the headgroup of LPA. Four residues involved in ligand recognition in LPA(5) were identified as follows: R2.60N mutant abolished receptor activation, whereas H4.64E, R6.62A, and R7.32A greatly reduced receptor activation. We also investigated the SAR of LPA5 using LPA analogs and other non-lysophospholipid ligands. SAR revealed that the rank order of agonists is alkyl glycerol phosphate > LPA > farnesyl phosphates >> N-arachidonoylglycine. These results confirm LPA(5) to be a bona fide lysophospholipid receptor. We also evaluated several compounds with previously established selectivity for the endothelial differentiation gene receptors and found several that are LPA(5) agonists. A pharmacophore model of LPA(5) binding requirements was developed for in silico screening, which identified two non-lipid LPA(5) antagonists. Because LPA(5) transcripts are abundant in human platelets, we tested its antagonists on platelet activation and found that these non-lipid LPA(5) antagonists inhibit platelet activation. The present results suggest that selective inhibition of LPA(5) may provide a basis for future anti-thrombotic therapies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available