4.6 Article

WISP1, a Pro-mitogenic, Pro-survival Factor, Mediates Tumor Necrosis Factor-α (TNF-α)-stimulated Cardiac Fibroblast Proliferation but Inhibits TNF-α-induced Cardiomyocyte Death

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 284, Issue 21, Pages 14414-14427

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M809757200

Keywords

-

Funding

  1. Research Service of the Department of Veterans Affairs

Ask authors/readers for more resources

WNT1-inducible signaling pathway protein-1 (WISP1), a member of the CYR61/CTGF/Nov family of growth factors, can mediate cell growth, transformation, and survival. Previously we demonstrated that WISP1 is up-regulated in post-infarct heart, stimulates cardiac fibroblast proliferation, and is induced by the proinflammatory cytokine tumor necrosis factor-alpha (TNF-alpha). Here we investigated (i) the localization of TNF-alpha and WISP1 in post-infarct heart, (ii) the mechanism of TNF-alpha-mediated WISP1 induction in primary human cardiac fibroblasts (CF), (iii) the role of WISP1 in TNF-alpha-mediated CF proliferation and collagen production, and (iv) the effects of WISP1 on TNF-alpha-mediated cardiomyocyte death. TNF-alpha and WISP1 expressions were increased in the border zones and non-ischemic remote regions of the post-ischemic heart. In CF, TNF-alpha potently induced WISP1 expression in cyclic AMP response element-binding protein (CREB)-dependent manner. TNF-alpha induced CREB phosphorylation in vitro and DNA binding and reporter gene activities in vivo. TNF-alpha induced CREB activation via ERK1/2, and inhibition of ERK1/2 and CREB blunted TNF-alpha-mediated WISP1 induction. Most importantly, WISP1 knockdown attenuated TNF-alpha stimulated collagen production and CF proliferation. Furthermore, WISP1 attenuated TNF-alpha-mediated cardiomyocyte death, thus demonstrating pro-mitogenic and pro-survival effects for WISP1 in myocardial constituent cells. Our results suggest that a TNF-alpha/WISP1 signaling pathway may contribute to post-infarct cardiac remodeling, a condition characterized by fibrosis and progressive cardiomyocyte loss.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available