4.6 Article

Platelet-derived Growth Factor Differentially Regulates the Expression and Post-translational Modification of Versican by Arterial Smooth Muscle Cells through Distinct Protein Kinase C and Extracellular Signal-regulated Kinase Pathways

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 285, Issue 10, Pages 6987-6995

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M109.088674

Keywords

-

Funding

  1. National Institutes of Health [HL18645, HL62887, HL88627]
  2. National Health and Medical Research Council of Australia Research Project [268928]
  3. Diabetes Australia Research Trust

Ask authors/readers for more resources

The synthesis of proteoglycans involves steps that regulate both protein and glycosaminoglycan (GAG) synthesis, but it is unclear whether these two pathways are regulated by the same or different signaling pathways. We therefore investigated signaling pathways involved in platelet-derived growth factor (PDGF)-mediated increases in versican core protein and GAG chain synthesis in arterial smooth muscle cells (ASMCs). PDGF treatment of ASMCs resulted in increased versican core protein synthesis and elongation of GAG chains attached to the versican core protein. The effects of PDGF on versican mRNA were blocked by inhibiting either protein kinase C (PKC) or the ERK pathways, whereas the GAG elongation effect of PDGF was blocked by PKC inhibition but not by ERK inhibition. Interestingly, blocking protein synthesis in the presence of cycloheximide abolished the PDGF effect, but not in the presence of xyloside, indicating that GAG synthesis that results from PKC activation is independent from de novo protein synthesis. PDGF also stimulated an increase in the chondroitin-6-sulfate to chondroitin-4-sulfate ratio of GAG chains on versican, and this effect was blocked by PKC inhibitors. These data show that PKC activation is sufficient to cause GAG chain elongation, but both PKC and ERK activation are required for versican mRNA core protein expression. These results indicate that different signaling pathways control different aspects of PDGF-stimulated versican biosynthesis by ASMCs. These data will be useful in designing strategies to interfere with the synthesis of this proteoglycan in various disease states.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available