4.6 Article

The Divalent Metal Transporter Homologues SMF-1/2 Mediate Dopamine Neuron Sensitivity in Caenorhabditis elegans Models of Manganism and Parkinson Disease

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 284, Issue 51, Pages 35758-35768

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M109.051409

Keywords

-

Funding

  1. NIEHS [R011ES014459, R01ES010563]
  2. Dept. of Defense Manganese Health Research Program [W81XWH-05-1-0239]
  3. National Institutes of Health Center for Research Resources

Ask authors/readers for more resources

Parkinson disease (PD) and manganism are characterized by motor deficits and a loss of dopamine (DA) neurons in the substantia nigra pars compacta. Epidemiological studies indicate significant correlations between manganese exposure and the propensity to develop PD. The vertebrate divalent metal transporter-1 (DMT-1) contributes to maintaining cellular Mn2+ homeostasis and has recently been implicated in Fe2+-mediated neurodegeneration in PD. In this study we describe a novel model for manganism that incorporates the genetically tractable nematode Caenorhabditis elegans. We show that a brief exposure to Mn2+ increases reactive oxygen species and glutathione production, decreases oxygen consumption and head mitochondria membrane potential, and confers DA neuronal death. DA neurodegeneration is partially dependent on a putative homologue to DMT-1, SMF-1, as genetic knockdown or deletion partially inhibits the neuronal death. Mn2+ also amplifies the DA neurotoxicity of the PD-associated protein alpha-synuclein. Furthermore, both SMF-1 and SMF-2 are expressed in DA neurons and contribute to PD-associated neurotoxicant-induced DA neuron death. These studies describe a C. elegans model for manganism and show that DMT-1 homologues contribute to Mn2+- and PD-associated DA neuron vulnerability.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available