4.6 Article

Sites of Intra- and Intermolecular Cross-linking of the N-terminal Extension of Troponin I in Human Cardiac Whole Troponin Complex

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 284, Issue 21, Pages 14258-14266

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M807621200

Keywords

-

Funding

  1. National Institutes of Health [PO1 HL 62426, RO1 HL 82923]
  2. The Searle Funds

Ask authors/readers for more resources

Our previous studies (Howarth, J.W., Meller, J., Solaro, R.J., Trewhella, J., and Rosevear, P. R. (2007) J. Mol. Biol. 373, 706-722) of the unique N-terminal region of human cardiac troponin I (hcTnI), predicted a possible intramolecular interaction near the basic inhibitory peptide. To explore this possibility, we generated single cysteine mutants (hcTnI-S5C and hcTnI-I19C), which were labeled with the hetero-bifunctional crosslinker benzophenone-4-maleimide. The labeled hcTnI was reconstituted to whole troponin and exposed to UV light to form cross-linked proteins. Reversed-phase high-performance liquid chromatography and SDS-PAGE indicated intra- and intermolecular cross-linking with hcTnC and hcTnT. Moreover, using tandem mass spectrometry and Edman sequencing, specific intramolecular sites of interaction were determined at position Met-154 (I19C mutant) and Met-155 (S5C mutant) of hcTnI and intermolecular interactions at positions Met-47 and Met-80 of hcTnC in all conditions. Even though specific intermolecular cross-linked sites did not differ, the relative abundance of cross-linking was altered. We also measured the Ca2+-dependent ATPase rate of reconstituted thin filament-myosin-S1 preparation regulated by either cross-linked or non-labeled troponin. Ca2+ regulation of the ATPase rate was lost when the Cys-5 hcTnI mutant was cross-linked in the absence of Ca2+, but only partially inhibited with Cys-19 cross-linking in either the presence or absence of Ca2+. This result indicates different functional effects of cross-linking to Met-154 and Met-155, which are located on different sides of the hcTnI switch peptide. Our data provide novel evidence identifying interactions of the hcTnI-N terminus with specific intra- and intermolecular sites.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available