4.6 Article

Mutants of the Arabidopsis thaliana Cation/H+ Antiporter AtNHX1 Conferring Increased Salt Tolerance in Yeast THE ENDOSOME/PREVACUOLAR COMPARTMENT IS A TARGET FOR SALT TOXICITY

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 284, Issue 21, Pages 14276-14285

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M806203200

Keywords

-

Funding

  1. Ministry of Science and Innovation in Spain [BFU2006-06968]

Ask authors/readers for more resources

Mutants of the plant cation/H+ antiporter AtNHX1 that confer greater halotolerance were generated by random mutagenesis and selected in yeast by phenotypic complementation. The amino acid substitutions that were selected were conservative and occurred in the second half of the membrane-associated N terminus. AtNHX1 complemented the lack of endogenous ScNHX1 in endosomal protein trafficking assays. Growth enhancement on hygromycin B and vanadate media agreed with a generally improved endosomal/prevacuolar function of the mutated proteins. In vivo measurements by P-31 NMR revealed that wild-type and mutant AtNHX1 transporters did not affect cytosolic or vacuolar pH. Surprisingly, when yeast cells were challenged with lithium, a tracer for sodium, the main effect of the mutations in AtNHX1 was a reduction in the amount of compartmentalized lithium. When purified and reconstituted into proteoliposomes or assayed in intact vacuoles isolated from yeast cells, a representative mutant transporter (V318I) showed a greater cation discrimination favoring potassium transport over that of sodium or lithium. Together, our data suggest that the endosome/prevacuolar compartment is a target for salt toxicity. Poisoning by toxic cations in the endosome/prevacuolar compartment is detrimental for cell functions, but it can be alleviated by improving the discrimination of transported alkali cations by the resident cation/H+ antiporter.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available