4.6 Article

A Common Biosynthetic Pathway Governs the Dimerization and Secretion of Inhibin and Related Transforming Growth Factor β (TGFβ) Ligands

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 284, Issue 14, Pages 9311-9320

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M808763200

Keywords

-

Funding

  1. National Health and Medical Research Council of Australia Project [388920, 494804, 241000]
  2. Monash Postgraduate Scholarship

Ask authors/readers for more resources

The assembly and secretion of transforming growth factor beta superfamily ligands is dependent upon non-covalent interactions between their pro- and mature domains. Despite the importance of this interaction, little is known regarding the underlying regulatory mechanisms. In this study, the binding interface between the pro- and mature domains of the inhibin alpha-subunit was characterized using in vitro mutagenesis. Three hydrophobic residues near the N terminus of the prodomain (Leu(30), Phe(37), Leu(41)) were identified that, when mutated to alanine, disrupted heterodimer assembly and secretion. It is postulated that these residues mediate dimerization by interacting non-covalently with hydrophobic residues (Phe(271), Ile(280), Pro(283), Leu(338), and Val(340)) on the outer convex surface of the mature alpha-subunit. Homology modeling indicated that these mature residues are located at the interface between two beta-sheets of the alpha-subunit and that their side chains form a hydrophobic packing core. Mutation of these residues likely disturbs the conformation of this region, thereby disrupting non-covalent interactions with the prodomain. A similar hydrophobic interface was identified spanning the pro- and mature domains of the inhibin beta(A)-subunit. Mutation of key residues, including Ile(62), Leu(66), Phe(329), and Pro(341), across this interface was disruptive for the production of both inhibin A and activin A. In addition, mutation of Ile(62) and Leu(66) in the beta(A)-propeptide reduced its ability to bind, or inhibit the activity of, activin A. Conservation of the identified hydrophobic motifs in the pro- and mature domains of other transforming growth factor beta superfamily ligands suggests that we have identified a common biosynthetic pathway governing dimer assembly.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available