4.6 Article

Triggering aggresome formation - Dissecting aggresome-targeting and aggregation signals in synphilin 1

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 283, Issue 41, Pages 27575-27584

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M802216200

Keywords

-

Ask authors/readers for more resources

Abnormal polypeptides that escape proteasome-dependent degradation and aggregate in cytosol can be transported via microtubules to an aggresome, a recently discovered organelle where aggregated proteins are stored or degraded by autophagy. We used synphilin 1, a protein implicated in Parkinson disease, as a model to study mechanisms of aggresome formation. When expressed in naive HEK293 cells, synphilin 1 forms multiple small highly mobile aggregates. However, proteasome or Hsp90 inhibition rapidly triggered their translocation into the aggresome, and surprisingly, this response was independent on the expression level of synphilin 1. Therefore, aggresome formation, but not aggregation of synphilin 1, represents a special cellular response to a failure of the proteasome/chaperone machinery. Importantly, translocation to aggresomes required a special aggresome-targeting signal within the sequence of synphilin 1, an ankyrin-like repeat domain. On the other hand, formation of multiple small aggregates required an entirely different segment within synphilin 1, indicating that aggregation and aggresome formation determinants can be separated genetically. Furthermore, substitution of the ankyrin-like repeat in synphilin 1 with an aggresome-targeting signal from huntingtin was sufficient for aggresome formation upon inhibition of the proteasome. Analogously, attachment of the ankyrin-like repeat to a huntingtin fragment lacking its aggresome-targeting signal promoted its transport to aggresomes. These findings indicate the existence of transferable signals that target aggregation-prone polypeptides to aggresomes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available