4.6 Article

Multiple mechanisms contribute to inhibit transcription in response to DNA damage

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 283, Issue 15, Pages 9555-9561

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M707700200

Keywords

-

Funding

  1. NCI NIH HHS [CA 130302, CA 90281] Funding Source: Medline

Ask authors/readers for more resources

Cellular DNA damage elicits the phosphorylation and ubiquitination of RNA polymerase II (RNAPII), leading to the global repression of transcription. In this report we show that there are at least two different pathways to transcriptional repression, depending on the type of DNA damage. After H2O2 treatment, transcription was rapidly inhibited and rapidly restored. On the other hand, UV irradiation caused a much slower transcriptional inhibition, with a corresponding depletion of unphosphorylated RNAPII. We found that after UV treatment, but not treatment with H2O2, the inhibition of transcription was dependent on both the proteasome and new protein synthesis. In addition, RNAPII activity and ubiquitination were regulated through the phosphorylation of RNAPII by the P-TEFb kinase. These results highlight that multiple cellular pathways exist to globally repress transcriptional processes that might interfere with the repair of DNA damage.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available