4.6 Article

Nitric oxide evokes an adaptive response to oxidative stress by arresting respiration

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 283, Issue 12, Pages 7682-7689

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M708845200

Keywords

-

Funding

  1. NIAID NIH HHS [AI54959] Funding Source: Medline

Ask authors/readers for more resources

Aerobic metabolism generates biologically challenging reactive oxygen species (ROS) by the endogenous autooxidation of components of the electron transport chain (ETC). Basal levels of oxidative stress can dramatically rise upon activation of the NADPH oxidase-dependent respiratory burst. To minimize ROS toxicity, prokaryotic and eukaryotic organisms express a battery of low-molecular-weight thiol scavengers, a legion of detoxifying catalases, peroxidases, and superoxide dismutases, as well as a variety of repair systems. We present herein blockage of bacterial respiration as a novel strategy that helps the intracellular pathogen Salmonella survive extreme oxidative stress conditions. A Salmonella strain bearing mutations in complex I NADH dehydrogenases is refractory to the early NADPH oxidase-dependent antimicrobial activity of IFN gamma-activated macrophages. The ability of NADH-rich, complex I-deficient Salmonella to survive oxidative stress is associated with resistance to peroxynitrite (ONOO-) and hydrogen peroxide (H2O2). Inhibition of respiration with nitric oxide (NO) also triggered a protective adaptive response against oxidative stress. Expression of the NDH-II dehydrogenase decreases NADH levels, thereby abrogating resistance of NO-adapted Salmonella to H2O2. NADH antagonizes the hydroxyl radical (OH center dot) generated in classical Fenton chemistry or spontaneous decomposition of peroxynitrous acid (ONOOH), while fueling AhpCF alkylhydroperoxidase. Together, these findings identify the accumulation of NADH following the NO-mediated inhibition of Salmonella's ETC as a novel antioxidant strategy. NO-dependent respiratory arrest may help mitochondria and a plethora of organisms cope with oxidative stress engendered in situations as diverse as aerobic respiration, ischemia reperfusion, and inflammation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available