4.6 Article

Lipid-engineered Escherichia coli Membranes Reveal Critical Lipid Headgroup Size for Protein Function

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 284, Issue 2, Pages 954-965

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M804482200

Keywords

-

Funding

  1. National Institutes of Health [R37 GM20478]
  2. Swedish Research Council and the Wenner-Gren Foundations

Ask authors/readers for more resources

Escherichia coli membranes have a substantial bilayer curvature stress due to a large fraction of the nonbilayer-prone lipid phosphatidylethanolamine, and a mutant (AD93) lacking this lipid is severely crippled in several membrane-associated processes. Introduction of four lipid glycosyltransferases from Acholeplasma laidlawii and Arabidopsis thaliana, synthesizing large amounts of two nonbilayer-prone, and two bilayer-forming gluco-and galacto-lipids, (i) restored the curvature stress with the two nonbilayer lipids, and (ii) diluted the high negative lipid surface charge in all AD93 bilayers. Surprisingly, the bilayer-forming diglucosyl-diacylglycerol was almost as good in improving AD93 membrane processes as the two nonbilayer-prone glucosyl-diacylglycerol and galactosyl-diacylglycerol lipids, strongly suggesting that lipid surface charge dilution by these neutral lipids is very important for E. coli. Increased acyl chain length and unsaturation, plus cardiolipin (nonbilayer-prone) content, were probably also beneficial in the modified strains. However, despite a correct transmembrane topology for the transporter LacY in the diglucosyl-diacylglycerol clone, active transport failed in the absence of a nonbilayer-prone glycolipid. The corresponding digalactosyl-diacylglycerol bilayer lipid did not restore AD93 membrane processes, despite analogous acyl chain and cardiolipin contents. Chain ordering, probed by bis-pyrene lipids, was substantially lower in the digalactosyldiacylglycerol strain lipids due to its extended headgroup. Hence, a low surface charge density of anionic lipids is important in E. coli membranes, but is inefficient if the headgroup of the diluting lipid is too large. This strongly indicates that a certain magnitude of the curvature stress is crucial for the bilayer in vivo.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available