4.6 Article

Effects of the JAK2 Inhibitor, AZ960, on Pim/BAD/BCL-xL Survival Signaling in the Human JAK2 V617F Cell Line SET-2

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 283, Issue 47, Pages 32334-32343

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M803813200

Keywords

-

Ask authors/readers for more resources

The Janus-associated kinase 2 (JAK2) V617F mutation is believed to play a critical role in the pathogenesis of polycythemia vera, essential thrombocythemia, and idiopathic myelofibrosis. We have characterized a novel small molecule JAK2 inhibitor, AZ960, and used it as a tool to investigate the consequences of JAK2 V617F inhibition in the SET-2 cell line. AZ960 inhibits JAK2 kinase with a K-i of 0.00045 mu M in vitro and treatment of TEL-JAK2 driven Ba/F3 cells with AZ960 blocked STAT5 phosphorylation and potently inhibited cell proliferation (GI(50) = 0.025 mu M). AZ960 demonstrated selectivity for TEL-JAK2-driven STAT5 phosphorylation and cell proliferation when compared with cell lines driven by similar fusions of the other JAK kinase family members. In the SET-2 human megakaryoblastic cell line, heterozygous for the JAK2 V617F allele, inhibition of JAK2 resulted in decreased STAT3/5 phosphorylation and inhibition of cell proliferation (GI(50) = 0.033 mu M) predominately through the induction of mitochondrial-mediated apoptosis. We provide evidence that JAK2 inhibition induces apoptosis by direct and indirect regulation of the antiapoptotic protein BCL-xL. Inhibition of JAK2 blocked BCL-XL mRNA expression resulting in a reduction of BCL-xL protein levels. Additionally, inhibition of JAK2 resulted in decreased PIM1 and PIM2 mRNA expression. Decreased PIM1 mRNA corresponded with a decrease in Pim1 protein levels and inhibition of BAD phosphorylation at Ser(112). Finally, small interfering RNA-mediated suppression of BCL-xL resulted in apoptotic cell death similar to the phenotype observed following JAK2 inhibition. These results suggest a model in which JAK2 promotes cell survival by signaling through the Pim/BAD/BCL-xL pathway.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available