4.6 Article

Dehydroascorbate reductase affects non-photochemical quenching and photosynthetic performance

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 283, Issue 31, Pages 21347-21361

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M802601200

Keywords

-

Ask authors/readers for more resources

Ascorbic acid (Asc) is a major antioxidant involved in photo-protection and photosynthetic function in plants. Dehydroascorbate reductase (DHAR) catalyzes the regeneration of Asc from its oxidized state and serves as an important regulator of Asc recycling. In this work, we used a molecular biochemical approach to investigate how the efficiency of Asc recycling affects non-photochemical quenching (NPQ). Suppression of DHAR expression resulted in a lower induction of NPQ that correlated with reductions in chlorophyll and xanthophyll pigments, quantum yield of photosystem II, and CO2 assimilation, whereas the level of reactive oxygen species increased. The quickly reversible component of NPQ decreased and the slowly reversible or irreversible component of NPQ increased following a reduction in DHAR expression. Significant photoinhibition was also observed following exposure to high light. Direct feeding with Asc restored the appropriate induction of NPQ in DHAR-suppressed leaves. In contrast, increasing DHAR expression increased the pool size of xanthophyll and chlorophyll pigments as well as the rate of CO2 assimilation, particularly at high light intensities, whereas the level of reactive oxygen species was reduced. Leaves with increased DHAR expression experienced less photoinhibition than did wild-type plants following exposure to high light. DHAR activity, therefore, can affect the appropriate induction of NPQ and level of photoprotection during exposure to high light.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available