4.6 Article

Afi1p functions as an Arf3p polarization-specific docking factor for development of polarity

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 283, Issue 24, Pages 16915-16927

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M802550200

Keywords

-

Ask authors/readers for more resources

ADP-ribosylation factors (Arfs) are highly conserved small GTPases and are critical components of vesicle trafficking. Yeast Arf3p, despite its similarity to mammalian Arf6, is not required for endocytosis but is involved in polarity development. In this study, we identified an Arf3p interacting protein 1 (Afi1p), which, through its N-terminal conserved region, specifically interacts with GTP-bound Arf3p. Afi1p is distributed asymmetrically at the plasma membrane and is required for polarized distribution of Arf3p but not of an Arf3p guanine nucleotide-exchange factor, Yel1p. However, Afi1p is not required for targeting of Arf3p or Yel1p to the plasma membrane. Like arf3 mutant yeast, afi1 mutant yeast exhibited an abnormal budding pattern and partially delayed actin patch polarization. An Afi1p, (38)KLGP4A-Afi1p, mutated at the Arf3p-binding region, loses its ability to interact with Arf3p and maintain the polarized distribution of Arf3p. Although (38)KLGP4A-Afi1p still possessed a proper polarized distribution, it lost its ability to rescue actin patch polarization in afi1 mutant cells. Our findings demonstrate that Afi1p functions as an Arf3p polarization-specific adapter and participates in development of polarity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available