4.6 Article

AIP1 is critical in transducing IRE1-mediated endoplasmic reticulum stress response

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 283, Issue 18, Pages 11905-11912

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M710557200

Keywords

-

Funding

  1. NHLBI NIH HHS [R01 HL65978-05, R01 HL077357-1, P01 HL070295-6] Funding Source: Medline

Ask authors/readers for more resources

We have previously shown that ASK1-interacting protein 1 (AIP1) transduces tumor necrosis factor-induced ASK1-JNK signaling. Because endoplasmic reticulum (ER) stress activates ASK1-JNK signaling cascade, we investigated the role of AIP1 in ER stress-induced signaling. We created AIP1-deficient mice (AIP1-KO) from which mouse embryonic fibroblasts and vascular endothelial cells were isolated. AIP1-KO cells show dramatic reductions in ER stress-induced, but not oxidative stress-induced, ASK1-JNK activation and cell apoptosis. The ER stress-induced IRE1-JNK/XBP-1 axis, but not the PERK-CHOP1 axis, is blunted in AIP1-KO cells. ER stress induced formation of an AIP1-IRE1 complex, and the PH domain of AIP1 is critical for the IRE1 interaction. Furthermore, reconstitution of AIP1-KO cells with AIP1 wild type, not an AIP1 mutant with a deletion of the PH domain (AIP1-Delta PH), restores ER stress-induced IRE1-JNK/XBP-1 signaling. AIP1-IRE1 association facilitates IRE1 dimerization, a critical step for activation of IRE1 signaling. More importantly, AIP1-KO mice show impaired ER stress-induced IRE1-dependent signaling in vivo. We conclude that AIP1 is essential for transducing the IRE1-mediated ER stress response.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available