4.6 Article

Binding of sulfurated molybdenum cofactor to the C-terminal domain of ABA3 from Arabidopsis thaliana provides insight into the mechanism of molybdenum cofactor sulfuration

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 283, Issue 15, Pages 9642-9650

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M708549200

Keywords

-

Funding

  1. NIGMS NIH HHS [R01 GM068631] Funding Source: Medline

Ask authors/readers for more resources

The molybdenum cofactor sulfurase ABA3 from Arabidopsis thaliana is needed for post-translational activation of aldehyde oxidase and xanthine dehydrogenase by transferring a sulfur atom to the desulfo-molybdenum cofactor of these enzymes. ABA3 is a two-domain protein consisting of an NH2-terminal NifS-like cysteine desulfurase domain and a C-terminal domain of yet undescribed function. The NH2-terminal domain of ABA3 decomposes L-cysteine to yield elemental sulfur, which subsequently is bound as persulfide to a conserved protein cysteinyl residue within this domain. In vivo, activation of aldehyde oxidase and xanthine dehydrogenase also depends on the function of the C-terminal domain, as can be concluded from the A. thaliana aba3/sir3-3 mutant. sir3-3 plants are strongly reduced in aldehyde oxidase and xanthine dehydrogenase activities due to a substitution of arginine 723 by a lysine within the C-terminal domain of the ABA3 protein. Here we present first evidence for the function of the C-terminal domain and show that molybdenum cofactor is bound to this domain with high affinity. Furthermore, cyanide-treated ABA3 C terminus was shown to release thiocyanate, indicating that the molybdenum cofactor bound to the C-terminal domain is present in the sulfurated form. Co-incubation of partially active aldehyde oxidase and xanthine dehydrogenase with ABA3 C terminus carrying sulfurated molybdenum cofactor resulted in stimulation of aldehyde oxidase and xanthine dehydrogenase activity. The data of this work suggest that the C-terminal domain of ABA3 might act as a scaffold protein where prebound desulfo-molybdenum cofactor is converted into sulfurated cofactor prior to activation of aldehyde oxidase and xanthine dehydrogenase.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available