4.6 Article

Serine 129 phosphorylation of α-synuclein induces unfolded protein response-mediated cell death

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 283, Issue 34, Pages 23179-23188

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M802223200

Keywords

-

Ask authors/readers for more resources

alpha-Synuclein is a major protein component deposited in Lewy bodies and Lewy neurites that is extensively phosphorylated at Ser(129), although its role in neuronal degeneration is still elusive. In this study, several apoptotic pathways were examined in alpha-synuclein-overexpressing SH-SY5Y cells. Following the treatment with rotenone, a mitochondrial complex I inhibitor, wildtype alpha-synuclein-overexpressing cells demonstrated intracellular aggregations, which shared a number of features with Lewy bodies, although cells overexpressing the S129A mutant, in which phosphorylation at Ser129 was blocked, showed few aggregations. In wildtype alpha-synuclein cells treated with rotenone, the proportion of phosphorylated alpha-synuclein was about 1.6 times higher than that of untreated cells. Moreover, induction of unfolded protein response (UPR) markers was evident several hours before the induction of mitochondrial disruption and caspase-3 activation. Eukaryotic initiation factor 2 alpha, a member of the PERK pathway family, was remarkably activated at early phases. On the other hand, the S129A mutant failed to activate UPR. Casein kinase 2 inhibitor, which decreased alpha-synuclein phosphorylation, also reduced UPR activation. The alpha-synuclein aggregations were colocalized with a marker for the endoplasmic reticulum-Golgi intermediate compartment. Taken together, it seems plausible that alpha-synuclein toxicity is dependent on the phosphorylation at Ser129 that induces the UPRs, possibly triggered by the disturbed endoplasmic reticulum-Golgi trafficking.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available