4.6 Article

Peptide specificity and lipid activation of the lysosomal transport complex ABCB9 (TAPL)

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 283, Issue 25, Pages 17083-17091

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M801794200

Keywords

-

Ask authors/readers for more resources

The lysosomal ABC transporter associated with antigen processing-like (TAPL, ABCB9) acts as an ATP-dependent polypeptide transporter with broad length selectivity. To characterize in detail its substrate specificity, a procedure for functional reconstitution of human TAPL was developed. By intensive screening of detergents, ideal solubilization conditions were evolved with respect to efficiency, long term stability, and functionality of TAPL. TAPL was isolated in a two-step procedure with high purity and, subsequently, reconstituted into proteoliposomes. The peptide transport activity of reconstituted TAPL strongly depends on the lipid composition. With the help of combinatorial peptide libraries, the key positions of the peptides were localized to the N- and C-terminal residues with respect to peptide transport. At both ends, TAPL favors positively charged, aromatic, or hydrophobic residues and disfavors negatively charged residues as well as asparagine and methionine. Besides specific interactions of both terminal residues, electrostatic interactions are important, since peptides with positive net charge are more efficiently transported than negatively charged ones.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available